Semi-Parametric Inducing Point Networks and Neural Processes Predictor Module

Richa Rastogi, Yair Schiff, Alon Hacohen, Zhaozhi Li, Ian Lee, Yuntian Deng, Mert R. Sabuncu, Volodymyr Kuleshov

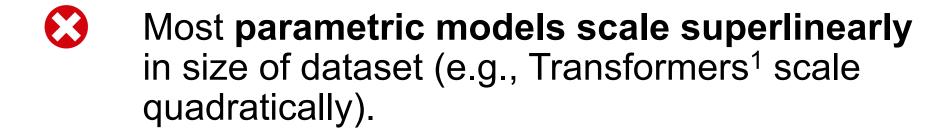
Semi-parametric setup:

• We have access to training set at inference time:

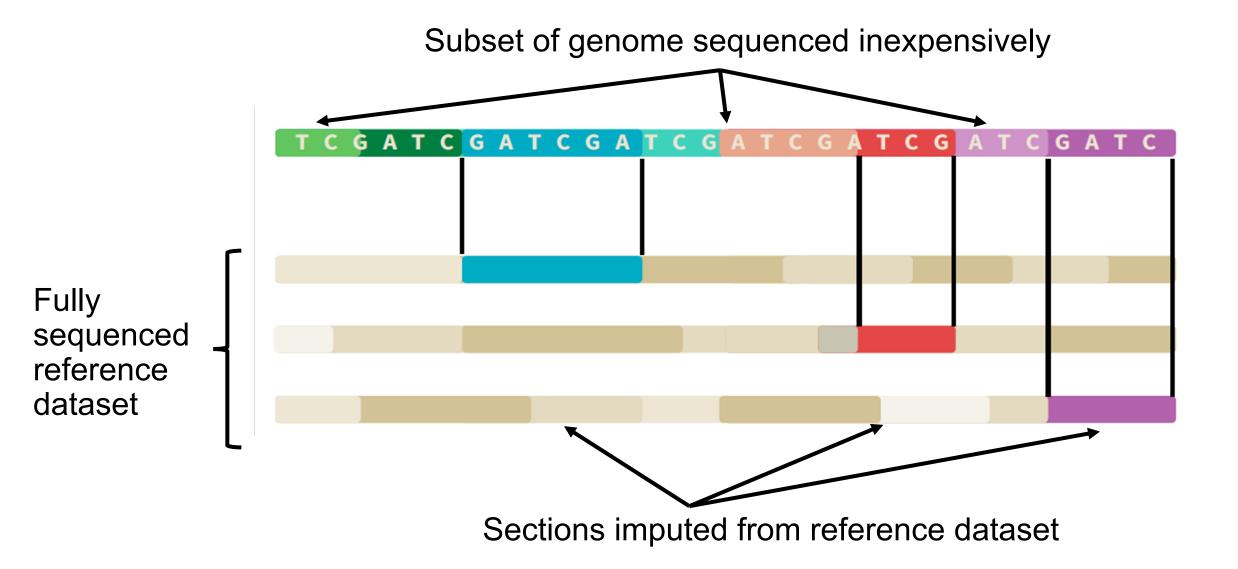
$$\mathcal{D}_{train} = \{ x^{(i)}, y^{(i)} \}_{i=1}^{n}$$

Goal is to learn parametric mapping conditioned on this dataset:

$$\mathbf{y} = f_{\boldsymbol{\theta}}(\mathbf{x} \mid \mathcal{D}_{train})$$



Meta-learning tasks benefit from conditioning on larger contexts.

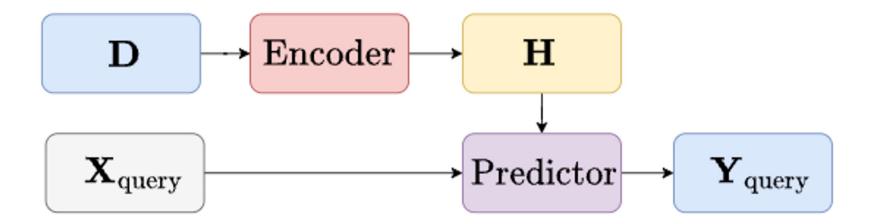


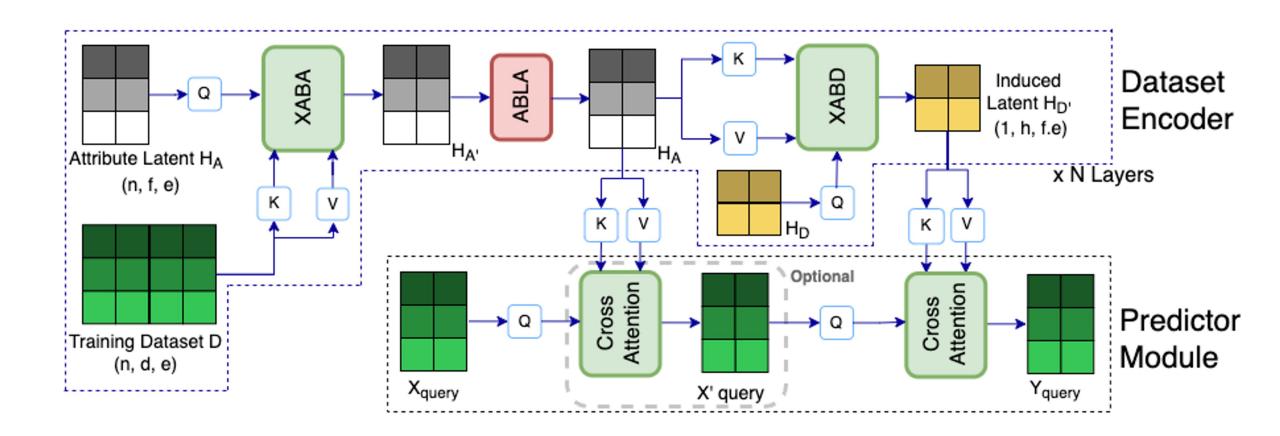
Motivating example: Parametric models are poor fit for large genome sequence imputation and cannot scale to larger reference datasets

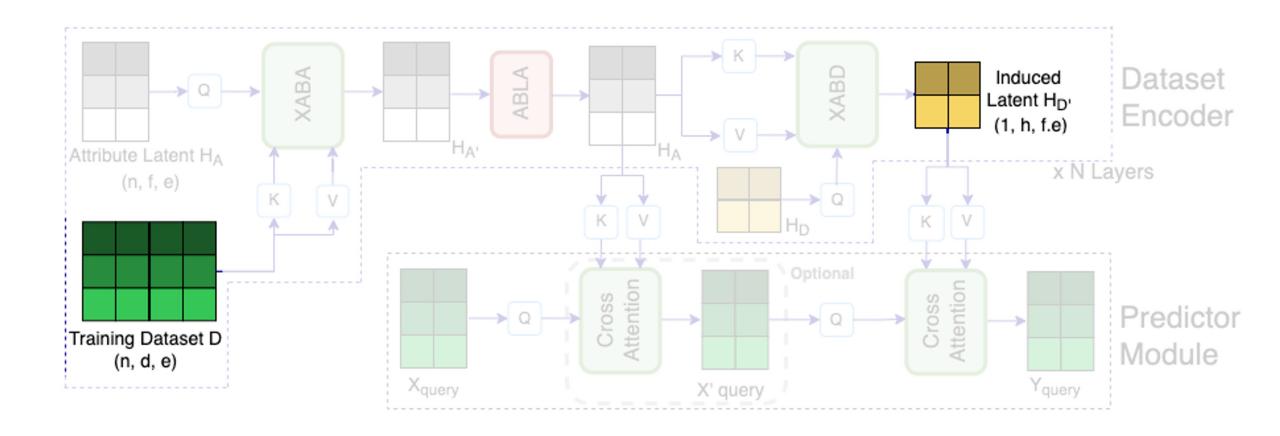
Semi-Parametric Inducing Point Networks

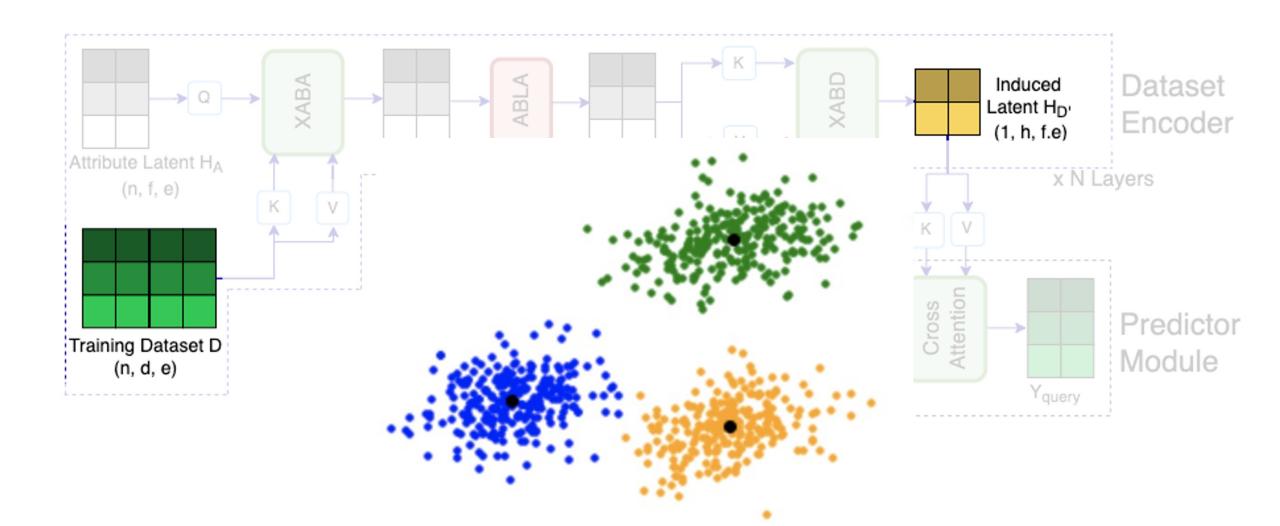
- Linear time and space complexity in the size and the dimension of the data during training.
- Neural Processes architecture that supports larger context sizes.
- State-of-the-art results on genotype imputation task.

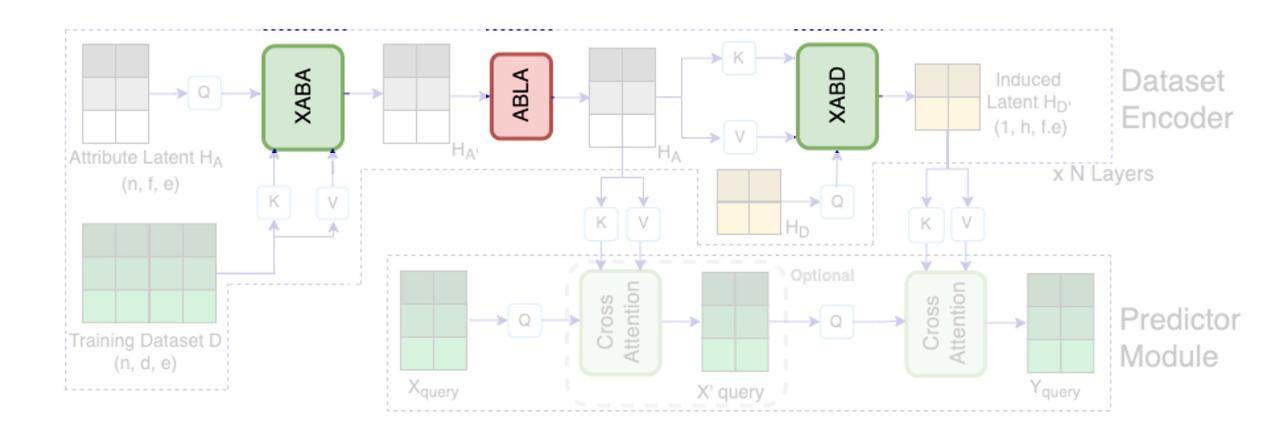
SPIN Overview

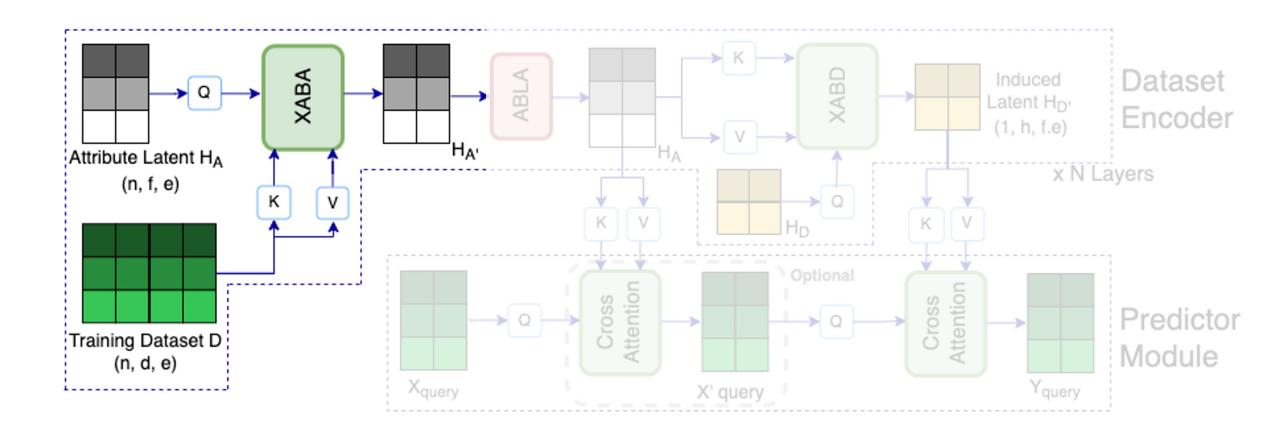


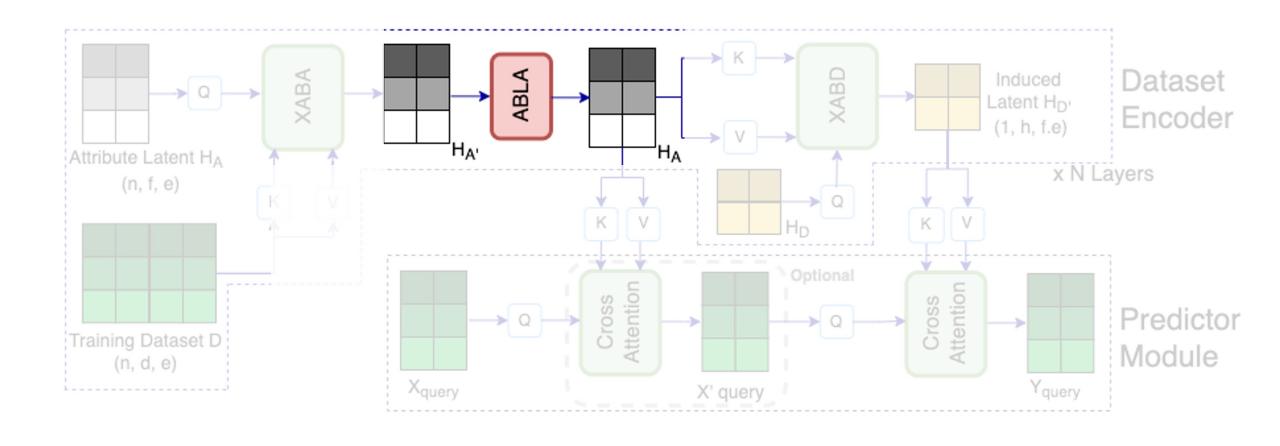




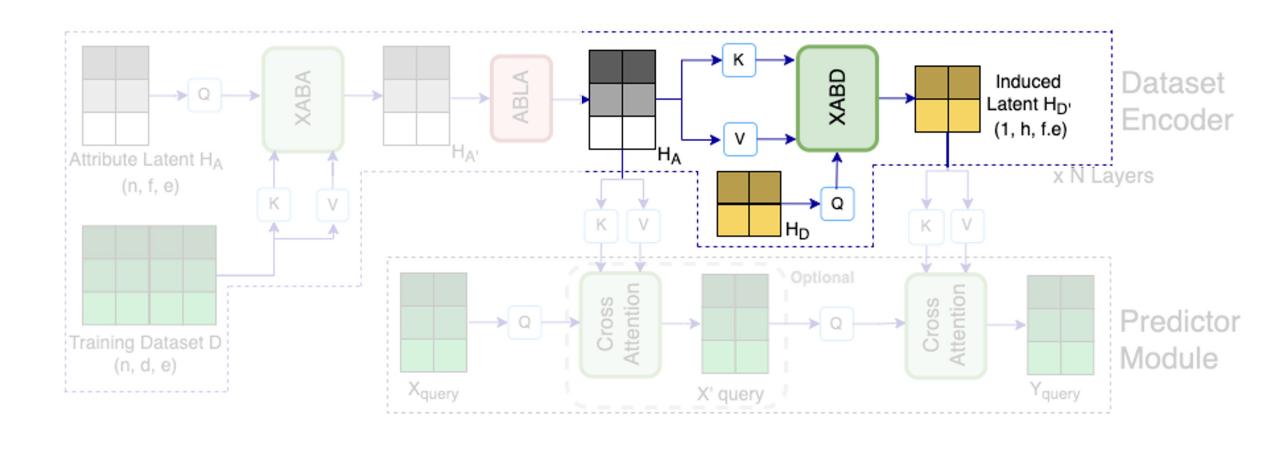




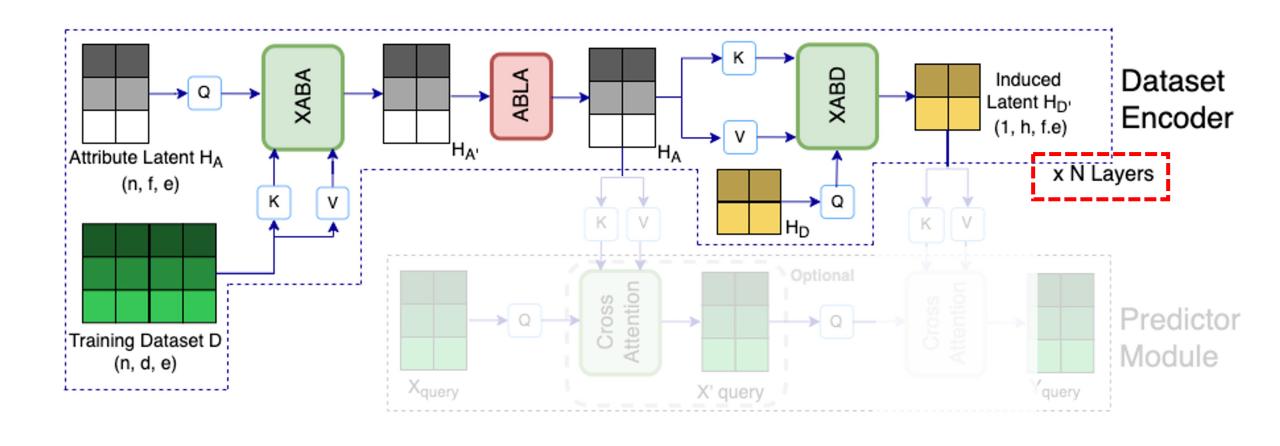




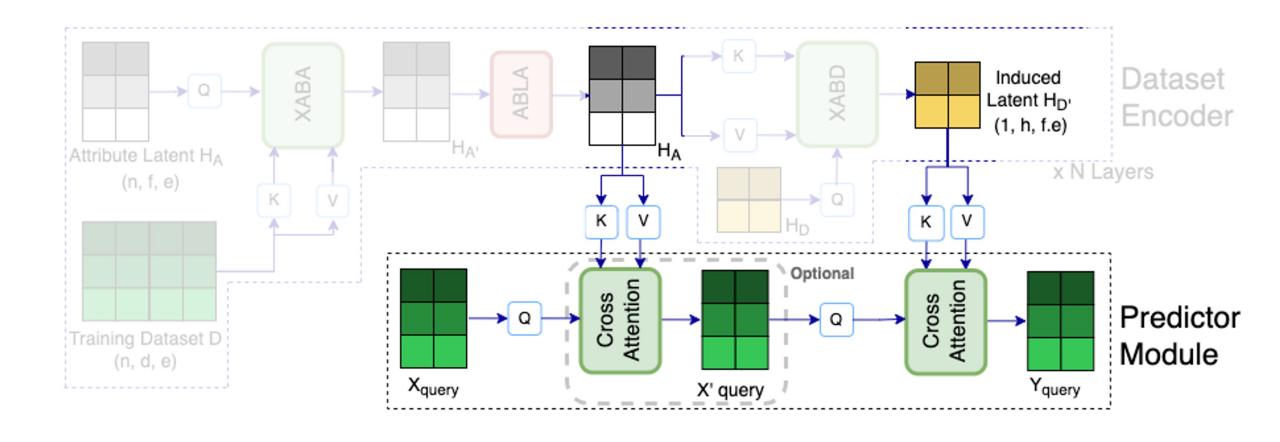
(Self-)<u>Attention Between Latent Attributes (ABLA)</u>: Enables inducing points to refine internal representations



<u>Cross-Attention Between Datapoints (XABD):</u> Generate inducing points that reduce context size



We stack multiple SPIN layers to form the complete Dataset Encoder



Predictor Module: Query refined inducing points; computation is <u>constant</u> <u>time</u> with respect to reference dataset size

Applying SPIN to Neural Processes...

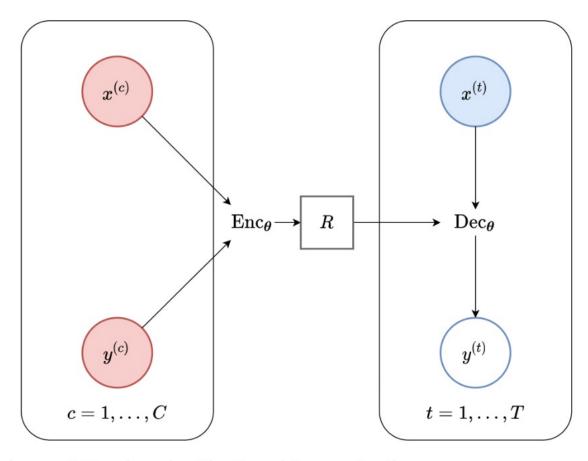
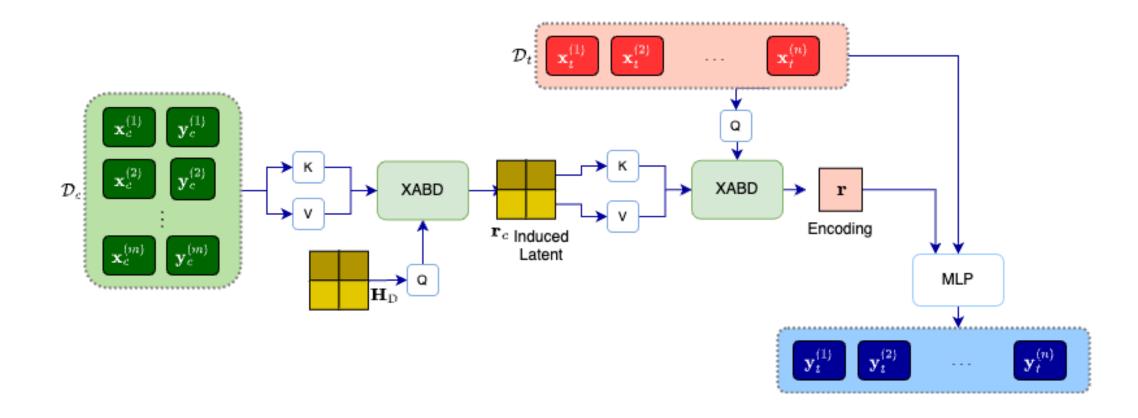
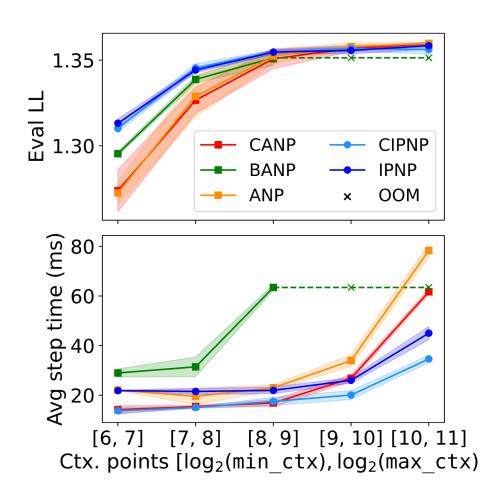


Fig. 5 High level computational graph of the Neural Process Family.

Inducing Point Neural Processes (IPNP)



IPNP better scales to larger contexts



SOTA results on genome imputation

Table 3: Performance Summary on Genomic Sequence Imputation. (*) represents parametric models.

A difference of 0.5% is statistically significant at pvalue 0.05.

102			1000	70.904			
(GBT*	MLP^*	KNN	Beagle	NPT-16	Set-TF-16	SPIN-16
Pearson $R^2 \uparrow 8$	87.63	95.31	89.70	95.64	95.84 ± 0.06	95.97±0.09	95.92 ± 0.12
Param Count↓	-	65M	-	-	16.7M	33.4M	8.1M

SPIN outperforms state-of-the-art, widely adopted software (Beagle) and is more efficient than alternative Transformer-based approaches (NPT, Set-TF)

Summary

- SPIN is linear time and space complexity in the size and the dimension of the data.
- IPNP is uncertainty aware, meta-learning algorithm that scales to larger context sizes.
- SPIN achieves state-of-the-art results on genome imputation task.

