Proposal-Contrastive Pretraining for Object Detection from Fewer Data

Quentin Bouniot 1,2

Romaric Audigier ¹ Angelique Loesch ¹ Amaury Habrard ^{2,3}

¹CEA-List

²Université Jean Monnet

³Institut Universitaire de France

Object Detectors in a Nutshell

- ▶ Detectors composed of backbone model and detection-specific heads.
- ▶ Predict class (Cls) and location (Loc) for each objects in an image.

Bouniot et al. 2/22

Pretraining in Object Detection

Overall Pretraining

¹Fangyun Wei et al. "Aligning pretraining for detection via object-level contrastive learning". In: NeurIPS. 2021

Bouniot et al.

²Zhigang Dai et al. "Up-DETR: Unsupervised pre-training for object detection with transformers". In: CVPR. 2021; Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022

Outline

- 1 Context
- Proposal Selection Contrast (ProSeCo)
 - Idea
 - Proposal-Contrastive Learning
 - Avoiding Collapse
- 3 Experimental Results
 - Comparison with state of the art
 - Ablation Studies
- 4 Conclusion

Bouniot et al. 4/22

Transformer-based Detectors

▶ Transformer-based detectors generates N proposals $\gg k$ objects in images.

Bouniot et al. 5/22

Transformer-based Detectors

ightharpoonup Transformer-based detectors generates N proposals $\gg k$ objects in images.

Contribution: Contrastive learning between proposals.

Bouniot et al. 6/22

Bouniot et al. 7/22

▶ Object Proposals from **Teacher** are matched with **Predictions** from **Student**.

Bouniot et al. 8/22

Unsupervised Proposal Matching

$$\hat{\sigma}_{i}^{\text{prop}} = \arg\min_{\sigma \in \mathfrak{S}_{N}} \sum_{j=1}^{N} \mathcal{L}_{\text{prop_match}}(\mathbf{y}_{(i,j)}, \hat{\mathbf{y}}_{(i,\sigma(j))})$$

$$\uparrow \text{Permutations of } N \text{ elements} \qquad \uparrow \text{Object Predictions}$$

▶ Proposal j found by the **teacher** associated to prediction $\hat{\sigma}_i^{\text{prop}}(j)$ of the **student**.

Bouniot et al. 9/22

Unsupervised Proposal Matching

$$\hat{\sigma}_i^{\mathsf{prop}} = \arg\min_{\sigma \in \mathfrak{S}_N} \sum_{j=1}^N \mathcal{L}_{\mathsf{prop_match}}(\mathbf{y}_{(i,j)}, \hat{\mathbf{y}}_{(i,\sigma(j))})$$

$$\uparrow \mathsf{Permutations} \text{ of } N \text{ elements} \qquad \uparrow \mathsf{Object} \text{ Predictions}$$

▶ Proposal j found by the **teacher** associated to prediction $\hat{\sigma}_i^{\text{prop}}(j)$ of the **student**.

Matching Cost $\mathcal{L}_{prop\ match}$ depends on:

- features similarity
- ► L₁ loss of box coordinates
- generalized IoU loss

Naive way

× Close proposals considered as negative examples.

Bouniot et al. 10/22

Localization-aware Contrastive loss

✓ **Overlapping** proposals are considered as **positive** examples.

Bouniot et al. 11/22

Soft Contrastive Estimation (SCE) loss function³

$$p'_{(in,jm)} = \frac{\mathbb{1}_{i \neq n} \mathbb{1}_{j \neq m} \exp(\mathbf{z}_{(i,j)} \cdot \mathbf{z}_{(n,m)} / \tau_t)}{\sum_{k=1}^{N_b} \sum_{l=1}^{N} \mathbb{1}_{i \neq k} \mathbb{1}_{j \neq l} \exp(\mathbf{z}_{(i,j)} \cdot \mathbf{z}_{(k,l)} / \tau_t)}$$
Features of Object Proposals

12/22

³ Julien Denize et al. "Similarity contrastive estimation for self-supervised soft contrastive learning". In: WACV. 2023.

Soft Contrastive Estimation (SCE) loss function³

$$p'_{(in,jm)} = \frac{\mathbb{1}_{i \neq n} \mathbb{1}_{j \neq m} \exp(\mathbf{z}_{(i,j)} \cdot \mathbf{z}_{(n,m)} / \tau_t)}{\sum_{k=1}^{N_b} \sum_{l=1}^{N} \mathbb{1}_{i \neq k} \mathbb{1}_{j \neq l} \exp(\mathbf{z}_{(i,j)} \cdot \mathbf{z}_{(k,l)} / \tau_t)}$$

$$\uparrow \text{Features of Object Proposals}$$

Features of Object Predictions

$$p_{(in,jm)}'' = \frac{\exp(\mathbf{z}_{(i,j)} \cdot \hat{\mathbf{z}}_{(n,m)}/\tau)}{\sum_{k=1}^{N_b} \sum_{l=1}^{N} \exp(\mathbf{z}_{(i,j)} \cdot \hat{\mathbf{z}}_{(k,l)}/\tau)}$$

Contrastive aspect between predictions and proposals

Bouniot et al. 12/22

 $^{^3 \}hbox{\it Julien Denize et al. "Similarity contrastive estimation for self-supervised soft contrastive learning". In: {\it WACV.}~2023.}$

Localization-aware similarity distribution

$$w_{(in,jm)}^{\mathsf{Loc}} = \lambda_{\mathsf{SCE}} \cdot \mathbb{1}_{i=n} \mathbb{1}_{IoU_i(j,m) \geq \delta} + (1-\lambda_{\mathsf{SCE}}) \cdot p_{(in,jm)}'$$

$$\uparrow_{\mathsf{IoU}} \text{ between proposals in same image above threshold}$$

Localization-aware similarity distribution

$$w_{(in,jm)}^{\mathsf{Loc}} = \lambda_{\mathsf{SCE}} \cdot \mathbb{1}_{i=n} \mathbb{1}_{IoU_i(j,m) \geq \delta} + (1-\lambda_{\mathsf{SCE}}) \cdot p_{(in,jm)}'$$
 four between proposals in same image above threshold

Localized SCE (LocSCE) function

$$\mathcal{L}_{\mathsf{LocSCE}}(\mathbf{y}, \hat{\mathbf{y}}, \hat{\sigma}^{\mathsf{prop}}) = -\frac{1}{N_b N} \sum_{i=1}^{N_b} \sum_{n=1}^{N_b} \sum_{j=1}^{N} \sum_{m=1}^{N} w^{\mathsf{Loc}}_{(in, jm)} \log(p''_{(in, j\hat{\sigma}^{\mathsf{prop}}_n(m))})$$
 Effective batch size $\hat{\mathbf{j}}$

Bouniot et al. 13/2

Avoiding Collapse

Bouniot et al. 14/22

⁴Jasper RR Uijlings et al. "Selective search for object recognition". In: *IJCV*. 2013.

Proposal Selection Contrast (ProSeCo)

► Full pretraining procedure with both **contrastive** and **localization** learning.

Bouniot et al. 15/22

Pretraining on ImageNet, finetuning on Mini-COCO

		Mini-COCO			
Pretraining	Detector	1% (1.2k)	5% (5.9k)	10% (11.8k)	
Supervised SwAV ⁵	Def. DETR Def. DETR	13.0 13.3	23.6 24.5	28.6 29.5	
SCRL ⁶	Def. DETR	16.4	26.2	30.6	
DETReg ⁷ Supervised	Def. DETR Mask R-CNN	15.9	26.1 19.4	30.9 24.7	
SoCo*8	Mask R-CNN	_	26.8	31.1	
ProSeCo (Ours)	Def. DETR	18.0	28.8	32.8	

⁵Mathilde Caron et al. "Unsupervised learning of visual features by contrasting cluster assignments". In: NeurIPS. 2020.

Bouniot et al. 16/22

 $^{^6\,\}mbox{Byungseok}$ Roh et al. "Spatially consistent representation learning". In: CVPR. 2021.

⁷Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022.

 $^{^8}$ Fangyun Wei et al. "Aligning pretraining for detection via object-level contrastive learning". In: NeurIPS. 2021.

Finetuning on other datasets

Method	FSOD-test	FSOD-train	PASCAL VOC	Mini-VOC	
	100% (11k)	100% (42k)	100% (16k)	5% (0.8k)	10% (1.6k)
Supervised	39.3	42.6	59.5	33.9	40.8
DETReg ⁹	43.2	43.3	63.5	43.1	48.2
ProSeCo (Ours)	46.6	47.2	65.1	46.1	51.3

✓ ProSeCo improves over SOTA on all datasets considered, with various amount of labeled data.

Bouniot et al. 17/22

⁹ Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022.

Ablation Studies

Pretraining	Dataset	mAP
ProSeCo w/ SwAV	coco	27.4
ProSeCo w/ SwAV	IN	27.8
DETReg w/ SCRL	IN	28.0
ProSeCo w/ SCRL	IN	28.8

Loss	δ	mAP
SCE	1.0	26.1
LocSCE (Ours)	0.2	27.0
LocSCE (Ours)	0.7	27.1
LocSCE (Ours)	0.5	27.8

- ▶ Dataset diversity more important than closeness to downstream task
- ✓ Consistency in the features improves performance
- ✓ Location of proposals helps for introducing easy positives for contrastive learning

Bouniot et al. 18/22

Take Home Message

We propose ProSeCo, a Proposal-Contrastive Pretraining strategy for Object Detection with Transformers.

- ✓ Leverage high number of Object Proposals for Proposal-Contrastive Learning.
- ✓ Our ProSeCo improves performance when training with limited labeled data.
- ✓ Consistency with object-level features is important for Object Detection.
- ✓ Location information helps for Proposal-Contrastive learning.

Bouniot et al. 19/22

Thank You!

Do not hesitate to contact us for question!

Bouniot et al., "Proposal-Contrastive Pretraining for Object Detection from Fewer Data"

Bouniot et al. 20/22

References I

- Fangyun Wei et al. "Aligning pretraining for detection via object-level contrastive learning". In: NeurIPS. 2021.
- Zhigang Dai et al. "Up-DETR: Unsupervised pre-training for object detection with transformers". In: CVPR. 2021.
- Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022.
- Julien Denize et al. "Similarity contrastive estimation for self-supervised soft contrastive learning". In: WACV. 2023.
- Jasper RR Uijlings et al. "Selective search for object recognition". In: IJCV. 2013.
- Mathilde Caron et al. "Unsupervised learning of visual features by contrasting cluster assignments". In: NeurIPS. 2020.

Bouniot et al. 21/22

References II

Bouniot et al. 22/2