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Object Detectors in a Nutshell

Detection
HeadsBackbone

Object Detector

Cls
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I Detectors composed of backbone model and detection-specific heads.

I Predict class (Cls) and location (Loc) for each objects in an image.
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Pretraining in Object Detection

Overall Pretraining
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XXX Consistency

××× Costly

(b) Our Approach
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××× Discrepancy

XXX Less costly

1Fangyun Wei et al. “Aligning pretraining for detection via object-level contrastive learning”. In: NeurIPS. 2021

2Zhigang Dai et al. “Up-DETR: Unsupervised pre-training for object detection with transformers”. In: CVPR. 2021; Amir Bar et al. “Detreg:

Unsupervised pretraining with region priors for object detection”. In: CVPR. 2022
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Transformer-based Detectors

Backbone
Transformer
Encoder-
Decoder

Object
proposals

I Transformer-based detectors generates N proposals� k objects in images.
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Transformer-based Detectors

Backbone

Object
proposals

Transformer
Encoder-
Decoder

I Transformer-based detectors generates N proposals� k objects in images.

Contribution: Contrastive learning between proposals.
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Proposal-Contrastive Learning
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Proposal-Contrastive Learning
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I Object Proposals from Teacher are matched with Predictions from Student.
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Proposal-Contrastive Learning

Unsupervised Proposal Matching

σ̂propi = arg minσ∈SN

∑N
j=1 Lprop_match(y(i,j), ŷ(i,σ(j)))

Permutations ofN elements

Object Proposals

Object Predictions

I Proposal j found by the teacher associated to prediction σ̂propi (j) of the student.

Matching Cost Lprop_match depends on:

I features similarity I L1 loss of box coordinates I generalized IoU loss
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Proposal-Contrastive Learning

Naive way

Strong view

Weak view

××× Close proposals considered as negative examples.
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Proposal-Contrastive Learning

Localization-aware Contrastive loss

Strong view

Weak view

XXX Overlapping proposals are considered as positive examples.
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Proposal-Contrastive Learning

Soft Contrastive Estimation (SCE) loss function3

p′(in,jm) =
1i 6=n1j 6=m exp(z(i,j) · z(n,m)/τt)∑Nb

k=1

∑N
l=1 1i 6=k1j 6=l exp(z(i,j) · z(k,l)/τt)

Relations between proposals Temperature

Features of Object Proposals

p′′(in,jm) =
exp(z(i,j) · ẑ(n,m)/τ)∑Nb

k=1

∑N
l=1 exp(z(i,j) · ẑ(k,l)/τ)

Contrastive aspect between predictions and proposals

Features of Object Predictions

3Julien Denize et al. “Similarity contrastive estimation for self-supervised soft contrastive learning”. In: WACV. 2023.

Bouniot et al. 12/22



Proposal-Contrastive Learning

Soft Contrastive Estimation (SCE) loss function3

p′(in,jm) =
1i 6=n1j 6=m exp(z(i,j) · z(n,m)/τt)∑Nb

k=1

∑N
l=1 1i 6=k1j 6=l exp(z(i,j) · z(k,l)/τt)

Relations between proposals Temperature

Features of Object Proposals

p′′(in,jm) =
exp(z(i,j) · ẑ(n,m)/τ)∑Nb
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Proposal-Contrastive Learning

Localization-aware similarity distribution

wLoc
(in,jm) = λSCE · 1i=n1IoUi(j,m)≥δ + (1− λSCE) · p′(in,jm)

IoU between proposals in same image above threshold

Localized SCE (LocSCE) function

LLocSCE(y, ŷ, σ̂prop) = − 1

NbN

Nb∑
i=1

Nb∑
n=1

N∑
j=1

N∑
m=1

wLoc
(in,jm) log(p′′

(in,jσ̂propn (m))
)

Effective batch size
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Avoiding Collapse
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I Student predictions must match boxes

randomly selected from Selective Search4

outputs.

4Jasper RR Uijlings et al. “Selective search for object recognition”. In: IJCV. 2013.
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Proposal Selection Contrast (ProSeCo)
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I Full pretraining procedure with both contrastive and localization learning.
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Pretraining on ImageNet, finetuning on Mini-COCO

Pretraining Detector
Mini-COCO

1% (1.2k) 5% (5.9k) 10% (11.8k)

Supervised Def. DETR 13.0 23.6 28.6

SwAV5 Def. DETR 13.3 24.5 29.5

SCRL6 Def. DETR 16.4 26.2 30.6

DETReg7 Def. DETR 15.9 26.1 30.9

Supervised Mask R-CNN – 19.4 24.7

SoCo∗8 Mask R-CNN – 26.8 31.1

ProSeCo (Ours) Def. DETR 18.0 28.8 32.8

5Mathilde Caron et al. “Unsupervised learning of visual features by contrasting cluster assignments”. In: NeurIPS. 2020.

6Byungseok Roh et al. “Spatially consistent representation learning”. In: CVPR. 2021.

7Amir Bar et al. “Detreg: Unsupervised pretraining with region priors for object detection”. In: CVPR. 2022.

8Fangyun Wei et al. “Aligning pretraining for detection via object-level contrastive learning”. In: NeurIPS. 2021.
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Finetuning on other datasets

Method
FSOD-test FSOD-train PASCAL VOC Mini-VOC

100% (11k) 100% (42k) 100% (16k) 5% (0.8k) 10% (1.6k)

Supervised 39.3 42.6 59.5 33.9 40.8

DETReg9 43.2 43.3 63.5 43.1 48.2

ProSeCo (Ours) 46.6 47.2 65.1 46.1 51.3

XXX ProSeCo improves over SOTA on all datasets considered, with various amount

of labeled data.

9Amir Bar et al. “Detreg: Unsupervised pretraining with region priors for object detection”. In: CVPR. 2022.
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Ablation Studies

Pretraining Dataset mAP

ProSeCo w/ SwAV COCO 27.4

ProSeCo w/ SwAV IN 27.8

DETReg w/ SCRL IN 28.0

ProSeCo w/ SCRL IN 28.8

Loss δ mAP

SCE 1.0 26.1

LocSCE (Ours) 0.2 27.0

LocSCE (Ours) 0.7 27.1

LocSCE (Ours) 0.5 27.8

I Dataset diversity more important than closeness to downstream task

XXX Consistency in the features improves performance

XXX Location of proposals helps for introducing easy positives for contrastive

learning
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Take Home Message

We propose ProSeCo, a Proposal-Contrastive Pretraining strategy for Object

Detection with Transformers.

XXX Leverage high number of Object Proposals for Proposal-Contrastive Learning.

XXX Our ProSeCo improves performancewhen training with limited labeled data.

XXX Consistencywith object-level features is important for Object Detection.

XXX Location information helps for Proposal-Contrastive learning.
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Thank You !
Do not hesitate to contact us for question !

Bouniot et al., “Proposal-Contrastive Pretraining for Object Detection from Fewer Data”
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