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I Background

@ Adversarial Robust Pruning (on VGG16 for CIFAR-10)
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Concern 1: Model pruning inflicts robustness recession (ICML-W, 2021)

Concern 2: Adversarial pruning has only achieved moderate compression
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¥ Learning on layer-specific compression rate
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" Learning on layer-specific compression rate
" Learning on prunable weight selection
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" Learning on layer-specific compression rate
" Learning on prunable weight selection
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I HARP: Holistic Adversarially Robust Pruning

Global Compression Control for Robust Pruning

min E max {Lrobust (@ O©M,x + 5, 9)}| + v Liw(@ OM,a,)

rS  (xy)~D
~~ —
global robust training on global control on
weight selection & layer-specific compression model compression

Global Control on Model Compression
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Methodological Implementation

Conduction of Pruning Mask

MO .= (]lS>P(a(/)7 SU)))

1—a" and a” = g(rV) with g : r — (1 — @pin) - sigmoid(r?) + i
= percentile of o'” and selection scores §¢*)

where: o
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Methodological Implementation

Conduction of Pruning Mask

MO .= (]ls>P(a(/), S(D))

1—a” and a” = g(rD) with g : r = (1 — @pin) - sigmoid(r™) + dyuin
percentile of " and selection scores $¢

where: o

P(-)

Learning on Trainable Rates r and Scores S
Back-propagation on non-differentiable operation ® via “Straight Through Estimation” (STE)
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(NeurIPS, 2016)
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Ablation Study
The Importance of Learning on Rates r and Scores S

Table: Natural accuracy and PGD-10 adversarial robustness are presented left and right of the / character.

Model Tr:ii‘i’hg 99 % Sparsity 99.9 % Sparsity
HARP-r HARP-S HARP HARP-r HARP-S HARP
PGD / 72.05/43.69 80.25/ 50.36  41.66/27.54 / 63.99/ 39.39
ResNet18  TRADES 73.31/45.14 / 77.78/ 50.16  73.31/45.14 / 77.78/ 50.16
MART 70.08/ /4711 75.88/ 50.79  70.08/ /47.11 75.88/ 50.79
PGD / 65.09/39.80 78.50/ 48.71  36.76/28.02 / 59.13/ 37.36
VGG16 TRADES / 66.75/41.79  76.46/ 48.01 41.63/26.95 / 63.43/ 34.64
MART / 64.37/41.46  73.04/ 51.09 37.19/30.68 / 55.02/ 39.39

= HARP-r is beneficial for moderate compression
= HARP-S is important in aggressive compression
= Concurrent optimization on » and S allows HARP to excel
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Experimental Comparison (1)

Comparing Robust Pruning Methods

CIFAR-10
g0 [ITTTTTTT TTTTTT T T T T T T 1 % T T T T
70 [+
|' & 3 50
vy ® @ CF F &3 T
=1 3 -
< <) <
—— R-ADMM (ICCV, 2019) N
Weight pruning 10 | —e— HYDRA (NeurlPS, 2020) 10 |-
—+— BCS-P (ICML, 2021)
TN | [T TN [T |
0% 90% 99% 99.9% 0% 90% 99% 99.9%
Sparsity Sparsity

Figure: Overview of pruning weights of a VGG 16 model for CIFAR-10 (left) and SVHN (right) with PGD-10 adversarial training.
Solid lines show the natural accuracy of all robust pruning methods. Dashed lines represent the robustness against AUTOATTACK.
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Experimental Comparison (1)

Comparing Robust Pruning Methods

CIFAR-10 SVHN
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Figure: Overview of pruning weights of a VGG 16 model for CIFAR-10 (left) and SVHN (right) with PGD-10 adversarial training.
Solid lines show the natural accuracy of all robust pruning methods. Dashed lines represent the robustness against AUTOATTACK.
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Experimental Comparison (2)

Comparing Robust Pruning Methods on ImageNet

Table: Comparing HARP with R-ADMM and HYDRA on ResNet50 models for ImageNet.

Attack FREE-AT 90 % Sparsity 99 % Sparsity

R-ADMM HYDRA HARP R-ADMM HYDRA HARP
- 60.25 35.26+0.46 49.4440.37 55.214-0.36 11.414+0.32 27.0040.66 34.62+0.36
PGD 32.82 14.35+0.41 23.75+0.33 27.10+0.41 5.15+0.17 12.23+0.19 14.67+0.32
C&W o 30.67 12.3540.33 21.60+0.27 24.624-0.38 4.03+0.22 11.224-0.18 12.42+0.33
APGD 31.54 13.58340.39 28.14+0.27 25.5740.33 4.854+0.31 12.344-0.34 13.47+0.34
AA 28.79 11.01+0.25 19.884-0.29 22.574-0.41 3.69+0.35 10.094-0.40 11.24+043

= R-ADMM (ICCV, 2019) suffers a large robustness recession at sparsity of 90 %
= HYDRA (NeurlPS, 2020) significantly benefits from learnable masks

= HARP shows the prominence of concurrent optimization on rates r and scores S
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Impact of Layer-specific Non-uniformity (1)

Table: Comparing performance of R-ADMM and HYDRA by using ERK and LAMP and by HARP on CIFAR-10. Natural
accuracy and PGD-10 robustness are presented left and right of the / character.

Model Sparsity R-ADMM HYDRA HARP
Original w/ ERK w/ LAMP Original w/ ERK w/ LAMP
ResNet18 99% 71.42/42.31 80.36/ 80.64/ 48.28 75.53/45.84 79.09/49.17 / 80.25/ 50.36
99.9% 26.39/20.62 54.51/33.06 / 34.55/26.08 55.73/35.09 / 63.99/ 39.39
VGG16 99% 62.28/37.54 70.33/43.30 / 67.33/41.47 72.19/45.05 / 78.58 / 48.71
99.9% 21.28/17.46 43.35/29.11 / 23.41/20.99 50.38/34.32 / 59.13/ 37.36

= ERK (ICML, 2020) significantly improves uniform pruning methods
= LAMP (ICLR, 2021) has more promising performance than ERK

= HARP excels in robust pruning, particularly at the sparsity of 99.9 %
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Impact of Layer-specific Non-uniformity (2)

Distribution of layer compression rates

= Non-uniform strategies sacrifice more on middle layers
= HARP favors higher preservation on the front and back layer
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Figure: Layer-wise compression rates of 99.9 % sparsity on VGG16 for CIFAR-10
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Impact of Layer-specific Non-uniformity (3)

Distribution of layer preserved parameters

= Non-uniform strategies result in a close-uniform distribution
= HARP attaches higher importance to front and back layer
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Figure: Layer-wise preserved parameters of 99.9 % sparsity on VGG16 for CIFAR-10
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I Thank You!

KASTEL Security Research Labs
Karlsruhe Institute of Technology (KIT)

https://intellisec.de/team/qi/ - )
https://github.com/intellisec/harp/ ()
https://intellisec.de/research/harp/ (7
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