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➢ Issue: Shared vocabularies result in sub-
optimal tokenization and embeddings

➢ Solution: Separate embeddings from 
the transformer blocks

DEPT: Decoupled Embedding Pre-Training
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➢ The set of words is unlimited

➢ Subword tokenization (byte-pair encoding) balances 
encoding every word and char-level models

➢ Effectiveness depends on the pre-training corpus

From strings to tokens

Sennrich, et.al., “Neural Machine Translation of Rare Words 
with Subword Units”
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➢ Languages, mathematics, code vary 
in vocabulary / syntax / semantics

➢ The differences cause
➢ The curse of multilinguality
➢ Negative interference

➢ Adding more data sources can 
cause vocabulary dilution + 
capacity contention

Data Heterogeneity

Chang, et.al., “When is multilinguality a curse?”
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➢ Issue: Shared vocabularies result in sub-
optimal tokenization and embeddings

➢ Solution: Separate embeddings from 
the transformer blocks

DEPT: Decoupled Embedding Pre-Training
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#1 Enable vocabulary-agnostic training
1. Allows each data source to have its own optimized vocabulary
2. Avoids vocabulary dilution and capacity contention in the embeddings

#2 Reduce comms and memory
1. Shrinks vocabulary size by manipulating the embedding matrices
2. Avoids training and communicating tokens which are not relevant to a data source

#3 Improve transformer bodies
1. DEPT-trained transformer bodies show improved generalization to downstream tasks
2. They also show greater plasticity when adapting to new data distributions

DEPT Can…
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➢ Standard centralized learning 
algorithms like SGD assume data is 
independent and identically 
distributed (IID)

➢ In FL this assumption often breaks 
due to the private nature of data

➢ For LLMs this may be modeled by 
splitting languages / domain

Federated Learning (FL) for Pre-Training

Sani, et.al., “Photon: Federated LLM Pre-Training”
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Optimizing the Embedding Layer
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Optimizing the Embedding Layer
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Optimizing the Embedding Layer
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Optimizing the Embedding Layer
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DEPT Results
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DEPT Improves Comms

500x 
Reduction in Comms (all scales)
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DEPT Improves Memory

80% 
Reduction in Embedding Parameters (at >1B scale)



13

DEPT SPEC Improves Comms

714x 
Reduction in Communicated Parameters (>1B scale)
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DEPT Improves Downstream Performance

4.1 – 7.5% 
Improved downstream task performance
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DEPT Improves Plasticity



16

Flexibility
➢ Train on diverse—and even private—data sources without managing one global vocabulary

Efficiency
➢ Slash communication and memory costs, enabling large-scale, low-bandwidth pre-training

Generality
➢ Produce versatile foundation models that excel across tasks and adapt to new domains

A New Pre-training Paradigm
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Questions?
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Full Diagram
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Full Algorithm
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