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4D Generation
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Output: 4D Representation
(Dynamic 3D representation, e.g, NeRF, Gaussian
Splatting, Mesh...)

Challenges:
e The higher dimensional nature of 4D generation.

e No large scale datasets with 4D objects to train a robust generative model.



Dynamic 3D Content (4D) Generation
Related Works
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SDS [1] based optimization

e Time-consuming: take hours to generate a
single 4D object.

e Unstable optimization
MAV3D, Consistent4D, STAG4D, 4DGen

[1] Dreamfusion [Poole, Ben, et al.]
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Our Solution
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Novel View Videos

e State-of-the-art multi-frame and multi-view consistency.



Our Solution

Video frame f
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Input: Single-view Video Novel View Videos Output: 4D Representation

(Dynamic 3D representation, e.g, NeRF, Gaussian
Splatting, Mesh...)
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Novel View Video Synthesis 4D Optimization



Novel View Video Synthesis

Input Reference Video
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Input Reference Video
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Novel View Video Synthesis

Input Reference Video Novel View Videos
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Novel View Video Synthesis
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Novel View Video Synthesis

Stable Video Diffusion (SVD)
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Novel View Video Synthesis

Stable Video Diffusion 3D (SV3D)

Video frame f
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Novel View Video Synthesis

Stable Video Diffusion 4D (SV4D)
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Novel View Video Synthesis

Training Details
Resume weights from both SV3D and SVD

Video frame f : During training @: Add noise D : VAE Encoder @: Concat
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Novel View Video Synthesis

Training Details

Two-stage fine tuning

Static Orbit Dynamic Orbit

Figure Credit: SV3D [Voleti, Vikram, et al.]



Novel View Video Synthesis

Training Details

Training Dataset

Filtering
e Inappropriate licenses
e Too few animated frames
Improve data quality e Small movement
>
Rendering
e Dynamically adjust frame sampling
_ step for each object
Objaverse Dataset e Dynamically adapt camera distance
includes over 44K animated 3D objects. e Remove global motion

Figure Credit: Objaverse-XL [Deitke, Matt, et al.]



Novel View Video Synthesis

Generation for Arbitrary Length Videos
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Large image matrix with long input video / view GPU Memory



Novel View Video Synthesis

Generation for Arbitrary Length Videos

Known D Reference frames D Reference views Fully sampled Partially sampled

Video frame f
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Generation for Arbitrary Length Videos
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Interleaved sampling
of anchor frames
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Generation for Arbitrary Length Videos

Known D Reference frames D Reference views Fully sampled Partially sampled

Video frame f

Interleaved sampling

of anchor frames Dense sampling of middle frames



Novel View Video Synthesis

Generation for Arbitrary Length Videos

Known D Reference frames D Reference views Fully sampled Partially sampled
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Novel View Video Synthesis
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4D Optimization

Novel View Videos 4D Optimization Generated 4D Assets
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4D Optimization

Dynamic NeRF representation

Stage 1 (static)
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4D Optimization

Dynamic NeRF representation
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4D Generation

STAG4D DreamGaussian4D Stable Video 4D (Ours)

Input Video



Take-Away Message

e 5SV4D cansimultaneously generate multi-view and multi-frame images.

e S5SV4D sampling strategy enables sequential processing of arbitrary long input videos.



