Reward Dimension Reduction for Scalable Multi-Objective Reinforcement Learning (QR code is changed. Use the one here :))

Giseung Park, Youngchul Sung

Giseung Park is seeking a **postdoctoral position** in RL!

https://sites.google.com/ view/giseung-park

Multi-Objective Reinforcement Learning (MORL)

reward: vector function

MORL and Reward Uncertainty

(Scalar) Reward uncertainty set R (Regan and Boutilier, 2010)

- Strategy: conservative vs multiple-trial
- Bounded convex polytope
- Vertex functions = quantities we are interested in or able to measure.

- 1. Conservative strategy = max-min MORL (Park et al., 2024)
- 2. Multiple-trial strategy = multi-policy MORL with linear scalarization

$$\max_{\pi(\cdot|\cdot,\omega)} \omega^{\top} \left(\mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} \mathbf{r}_{t} \right] \right) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} (\omega^{\top} \mathbf{r}_{t}) \right], \ \forall \omega \in \Omega.$$

Multi-Policy MORL

Key Challenge

Multi-policy MORL struggles with scalability, but objectives often exhibit correlations. However, few online dimension reduction methods exist.

Solution: Online reward dimension reduction method ensuring Pareto-optimality

	Base	PCA	AE	NPCA	Ours
$HV(\times 10^{61},\uparrow)$	4.4 ± 6.8	0	0.007 ± 0.018	19.4 ± 15.3	166.9 ± 48.1
SP ($\times 10^5, \downarrow$)	1842 ± 1290	3837 ± 2164	7834 ± 3323	34.2 ± 52.3	2.3 ± 1.0

Poster Information + more

- Thu 24 April. Hall 3 + Hall 2B #398
- 3 p.m. 5:30 p.m. Singapore time
- Let's chat!

Giseung Park is seeking a **postdoctoral position** in RL!

