Poster
Correcting the Mythos of KL-Regularization: Direct Alignment without Overoptimization via Chi-Squared Preference Optimization
Audrey Huang · Wenhao Zhan · Tengyang Xie · Jason Lee · Wen Sun · Akshay Krishnamurthy · Dylan Foster
Hall 3 + Hall 2B #601
Abstract:
Language model alignment methods such as reinforcement learning from human feedback (RLHF) have led to impressive advances in language model capabilities, but are limited by a widely observed phenomenon known as *overoptimization*, where the quality of the language model degrades over the course of the alignment process. As the model optimizes performance on an offline reward model, it overfits to inaccuracies and drifts away from preferred responses covered by the data. To discourage such distribution shift, KL-regularization is widely employed in existing offline alignment methods, but overoptimization continues to harm performance. Lending theoretical insight into the source of these empirical observations, we first show that the KL-regularization is too weak to prevent overfitting, then ask: is it possible to design an efficient algorithm that is provably robust to overoptimization?In this paper, we advance theoretical understanding of sample-efficient offline alignment and introduce a new algorithm called $\chi^2$-Preference Optimization ($\chi$PO). $\chi$PO is a one-line change to Direct Preference Optimization (DPO; Rafailov et al. 2023), that modifies only the logarithmic link function in the DPO objective. Despite this minimal change, $\chi$PO implicitly implements the principle of *pessimism in the face of uncertainty* via regularization with the $\chi^2$-divergence---which quantifies uncertainty more effectively than KL-regularization---and provably alleviates overoptimization, achieving sample-complexity guarantees based on *single-policy concentrability*, the gold standard in offline reinforcement learning. This guarantee makes $\chi$PO the first simple, yet general-purpose offline alignment algorithm that is provably robust to overoptimization.
Chat is not available.